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Thermal acoustic vibrations can be sustained during combustion as a result of an exter- 
nal heat supply, a flow of internal energy, and a flow of kinetic energy [I, 2]. Such vibra- 
tions occur in the propagation of flames in gas mixtures and aerosols [4]. In [5], acoustic 
vibrations were seen in the combustion of an aerosol near the closed end of a firebox. These 
oscillations were attributed [2, 5] to the feedback mechanism that is the basis for formation 
of the mixture. Acoustic vibrations were obtained in [6] in the numerical solution of a uni- 
dimensional problem on the combustion of an aerosol of a specified composition near the closed 
end of a tube. In [7], investigators numerically studied a two-dimensional problem on the 
combustion of an aerosol in a closed volume~ 

Here, we analytically study the occurrence of vibrations in the combustion of aerosols 
within bounded volumes. We will use the method of two-scale expansions [8]. In accordance 
with this method, we introduce a small parameter E which is proportional to the mass concen- 
tration and calorific value of the fuel. At e << i, the velocity of the gas is much lower 
than the speed of sound, and the kinetic energy is negligible. It is shown that oscillations 
of the parameters occur about values, averaged over rapid time, which satisfy the equations 
of the homobaric approximation [9, i0]. Here, even with a constant external heat supply en- 
suring averaged motion, oscillations are generated due to the flow of internal energy from 
the combustion zone. 

i. Basic Equations. Formulation of the Problem. The convective combustion of aerosols 
is described in the general case by the equations of the mechanics of multiphase media [Ii]. 
If we ignore the volume content of particles, consider that the particles are immobile during 
the initial stage of propagation of the convective front, and assume that their temperature 
is constant during combustion, then the equations for describing combustion reduce to the 
equations of gas dynamics with distributed sources of mass and heat [I0]. In a rectangular 
coordinate system, we will examine the region D of a volume V which, for the sake of definite- 
ness, includes the coordinate origin. The volume has the boundary surface 2. Let combustion 
begin from the subregion D o of the region D. The subregion also includes the origin and has 
the boundary surface 20 and volume V 0. Similarly to [9, i0], we will examine two variants 
of the problem: combustion occurs only in the region of initiation Do; hot gases flowing 
out of D o form a convective combustion front on which particles are instantaneously ignited. 
Here, combustion takes place in the region Dw(t) , which is of the volume Vw(t) and has the 
boundary surface 2w(t). Let rw(t) be a radius vector with the pole at the coordinate origin, 
the end of the vector being located on Z w. Let r be a radius vector which coincides with 
r w in terms of direction but is of arbitrary length. The latter vector takes values from 
zero to infinity. At the initial moment of time rw(0) = r 0 (r 0 is the radius vector whose 
end lies on So). 

We will change over to dimensionless variables. The space variables are referred to 
the characteristic dimension of the region Z, velocity is referred to the initial sonic ve- 
locity in the gas ai0, and density is referred to the initial densities of the gas and solid 
phases Pi0 and o2o. The dimensionless derived variables are l/a i0 for time and pi0ai02 for 
pressure. The equations for describing the combustion of a unit volume of fuel take the form 
[ io] 

a.~i mioe Ot ~ Vpiv ~ e dPe dr , 
q (? -- i) J' d--7- : m20 (? -- i) q 

8v e 
P~ "T/- + Pi ( v ' V )  v + VP = q ( ? _  t) J r ,  

cop 8 2 ,~ 
a---F + ? V p v  - -  (? - -  t) (v .  V) p = e J  + -~a J r ' ,  
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drT~ 
Z ---- p~/s (yp)* % (rw (t) - -  r), - ~  = vw (rw, t) 

e :  , q =  --7~, m~0 , m 1 0 = 1 - - m 2 0  . ( 1 . 1 )  
Pl0al0 al0 Pl0 ~- P20 

Here, n o is the number of particles per unit volume; do, initial diameter of the particles; 
p2 ~ true density of the solid phase; Us, linear rate of combustion of unit fuel; ~, an em- 
pirical constant; m20, mass concentration of the solid phase; Q is determined by the enthalpy 
of the combustion products; $, adiabatic exponent; e and q, governing dimensionless param- 
eters; r w and r, moduli of the corresponding vectors; X, unit function which is equal to unity 
inside the region D w and zero outside it; v w, gas velocity on the surface Z w. In the first 
variant of the problem, r w ~ r 0. The term J in the right side of the momentum equation 
accounts for the fact that the gas is sent into the combustion region at zero velocity (at 
the velocity of the particles at rest). 

For example, let the boundary of the region D be completely closed. Then the condition 
of impermeability prevails on the boundary surface I. Thus, we write the initial and boun- 
dary conditions of the problem in the form 

t = 0: v = 0, Pl = 1, p~ = i ,  p = ~ly, r w = r 0 ;  t ~ 0 :  v~[ z = 0 .  ( 1 . 2 )  

The  v e l o c i t y  v e c t o r  v c a n  be  r e p r e s e n t e d  a s  t h e  sum o f  t h e  p o t e n t i a l  and  v o r t i c a l  c o m p o n e n t s .  
The f o l l o w i n g  r e l a t i o n s  [12]  a r e  v a l i d  f o r  e a c h  o f  t h e s e  c o m p o n e n t s :  

v = vT+rot A (rot rot A = 2~, ~ = 0.5 rotv), (i.3) 

AT = V v, AA =--2~, 

is the velocity potential; A is the vector potential; ~ is the curl. 

Asymptotic Solution of the Problem at ~ ~ i. We will examine the case of low com- 

where 

2. 
bustion rates (low fuel concentratons), when ~ ~ i. This is among the class of physical 
problems in which a small perturbation acts over a long period of time. In these problems, 
a solution constructed in the form of an ordinary expansion connected with the limiting pro- 
cess e + 0 (with t fixed) will not be uniformly valid. The nonuniformity of the expansion 
will be especially evident when the solution contains secular terms of the type et. The physi 
cal phenomenon described by the formulation of the present problem is characterized by the 
presence of two time scales: a small scale associated with the propagation of acoustic dis- 
turbances inside the region; a large scale connected with the motion of the gas itself inside 
the region. In accordance with the concept underlying the method of two-scale perturbations, 
the uniformly valid expansion being sought should explicitly contain time variables referred 
to these two time scales. 

We introduce the slow �9 = et and fast t' = e-1~(x) time variables. Here, ~(T) [~(0) = 
0] is an unknown function chosen on the basis of the need to have expansions of the sought 
functions that are uniformly valid. We will seek these expansions in the form 

pl(r, t, e) = Rx0(r, t ' ,  T) -~ eRn( r ,  t ' ,  T) • eeRie(r, t ' ,  T) q- .... 

p2(r, t ,  8) = R2o(r, t', T) -~ eR21(r, t',  T) ~- e~R22(r, t', T) -~ .... 

v(r ,  t, e) = evl(r,  t ' ,  T) ~- e~v2(r, t ' ,  T) -~ .... ( 2 . 1 )  

p( r ,  t, e) = P0(r, t ' ,  T) q- ePl(r ,  t ' ,  ~) q- e2P2(r, t ' ,  T) -~ .... 

rw(t, e) = rw0(t', ~) q- erwl(t ' ,  ~) q- e2r~2(t ' ,  ~) q- ... 

The  r e q u i r e m e n t  o f  u n i f o r m  v a l i d i t y  f o l l o w e d  i n  d e t e r m i n i n g  t h e  t e r m s  o f  e x p a n s i o n s  ( 2 . 1 )  
a m o u n t s  t o  t h e  c o n d i t i o n  t h a t  t h e  r a t i o  o f  e a c h  g i v e n  t e r m  o f  t h e  e x p a n s i o n  t o  t h e  p r e c e d i n g  
t e r m  be  f i n i t e  t h r o u g h o u t  t h e  e n t i r e  d o m a i n  o f  t h e  i n d e p e n d e n t  v a r i a b l e s  b e i n g  s t u d i e d .  

W i t h  t h e  i n t r o d u c t i o n  o f  new i n d e p e n d e n t  v a r i a b l e s ,  t h e  o p e r a t o r  f o r  d i f f e r e n t i a t i o n  
w i t h  r e s p e c t  t o  t i m e  t a k e s  t h e  f o r m  

O/Ot= ~O/Ot' +sO~Or (~=d~ld~). (2.2) 

I n s e r t i n g  ( 2 . 2 )  i n t o  ( 1 . 1 )  and  a l l o w i n g  f o r  ( 2 . 1 )  we o b t a i n  t h e  f o l l o w i n g  f o r  t h e  z e r o t h  a p -  
p r o x i m a t i o n  
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Rio = Rio(r, T), R2o ---- B~o(X), Po = Po('~), r~o = r~o(x) 
(R~o(r, 0) = 1, R~o(0) = t ,  Po(0) = t/?, r~o(0) = ro). 

(2.3) 

The parentheses contain the initial conditions for the zeroth approximation found on the basis 

of ( 1 . 2 ) .  

In accordance with (2.3), in the zeroth approximation the density and the position of 
the convective front will be independent of the fast time variable, while the pressure will 
be independent of the space variables (homobaric condition). Pressure will be a function 
only of the slow time variable. To determine the functions in (2.3), we examine the below 
equations of the first approximation. These equations follow from (i.i), (2.1), and (2.2): 

~. 8RH R 218 -'~o UPo) r ORlo 
- S F -  = q (? -- t)  X (r~o -- r)  o~ VR~oVl' 

m /?~/a 
= " " 1 0 - ' 2 0  ~ L (VPo)* ~ 

Oz m2oq (?-- l) x (rwo - -  r) 0~ ' 

~ R I O  O r 1  - Orwl 
+ V P  1 = O, rw~ + ~ O-g?- = v~l  (r~o), 

8P 1 
~ + ?PoVv~ = R~o/a (?Po)r % (r=o --  r) --  ~b o 

(Rn(r, O, O ) =  a2~(r, O, O ) =  v~(r, O, O ) =  P~(r, O, O)-----rwl(O , O ) =  0). 

( 2 . 4 )  

The parentheses show the initial conditions for the first approximation. The left sides of 
the momentum and energy equations in (2.4) represent the acoustic operators of the equations 
of motion of the gas with variable density Rl0. After separation of the variables, these 
equations yield 

V i V f p ) ~ f p = O ,  ( ~ V ] v ) n l z ~ O .  
('-~o ( 2 . 5  ) 

the second relation follows from boundary condition (1.2); fp(r Here, 
is independent of the fast time; ~ is a nonnegative parameter. 

Problem (2.5) is an eigenvalue problem. The eigenfunctions fpi and fDJ 
to the eigenvalues h i and ~j form an orthogonal and normalized system [13]-- 

{0, i :=/= j, ~ /vidD = O. 
; ]p~fpjdD 1, i = j, D 
D 

, ~) is a function which 

corresponding 

(2.6) 

The minimum eigenvalue %0 = 0 corresponds to fp0 = i. 

Subjecting the momentum equation in (2.4) to the operation of divergence and rotation 
and using (1.3), we obtain 

" ~ %  t ( t )  

We expand the unit function, as well as PI and k~l, into series in eigenfunctions fpk: 

h=l 
(2.8) co 

h=l k=l 

(Vw0 is the volume of the combustion zone in the zeroth approximation). 
the third equation of (2.4), we have 

Inserting ( 2 . 8 )  into 

h = l  h ~ l  h=l 

( 2 . 9 )  

Integrating (2.9) over the region D [with the use of (2.6)] and requiring that P10 not have 
a secular term, we find 8P10/St' = 0 and 
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Po 2/a r = R,0 (~Po) V=o(T) ( 2 . 1 0 )  

I n s e r t i n g  ( 2 . 8 )  i n t o  t h e  f i r s t  e q u a t i o n  o f  ( 2 . 7 ) ,  m u l t i p l y i n g  t h e  r e s u l t i n g  e q u a t i o n  
and ( 2 . 9 )  by f p k ,  and i n t e g r a t i n g  o v e r  D w i t h  t h e  u se  o f  ( 2 . 6 ) ,  we o b t a i n  

OtY~) lk OPlh 

With the initial conditions t' = 0, P~k = 0, ~ik = 0, the solution of (2.11) has the form 

--)~h?p0 

k 

Clff (O ) : O,  C2h ( 0 )  : 

! ! 
- - - -  -}- r q)lh---- Clh('~) sin%h ] / r~~  t' -t- c2h ('~) cos~,k ] / r~~  t ' , .  

T ~ (2.12) 

The parentheses show the initial conditions for the arbitrary functions of slow time Clk, 
C2k. Inserting (2.12) into the first two equations of (2.8) and using the last relation of 
(2.8), (2.10), and the initial condition for PI, we find 

oo * t 
Ar = Ar + Ar Pl  = )J Plkf~h, 

k=l 

h = l  

( 2 . 1 3 )  

from which it follows that the pressure in the first approximation Pl has only fluctuational 
terms, while the velocity has both a fluctuational (fast) component ~ I', associated with v l' 
and a monotonic (slow) component ~ i*, associated with v1* and dependent only on the slow 

time ~. 

Inserting (2.13) into the second equation of (2.7) and integrating over t', we obtain 
the following for the curl: 

. s (k) 0)1 = 0)1 (r,  t ' ,  T) ~- 0)i (r,: T), 0)1 = - -  __t ~ (1)lh rot V/vh 
2 h=l ~ (2.14) 

(0)1" is an arbitrary vector which is independent of the fast time). Since the conditions 
0)1 = 0, R10 = 1 and 0)i' = 0 are satisfied at t' = �9 = 0, we take o1*(r, 0) = 0 as the initial 

condition for 0)i*. 

The fast velocity component is more conveniently determined directly by integrating the 
momentum equation (2.4) over t'. The resulting arbitrary function r, T is obviously the 
slow velocity component. As a consequence of this, 

i ! t (I)lh I7# * 
v~ = --  ~-~o  wvk, v~ = V~t + rotAx, 

h = l  
(2.15) 

from which it follows that the fast and slow velocity components are in the general case vor- 
tical in character. Inserting (2.15) into the first, second, and fourth equations of (2.4), 
integrating them over t', and requiring that R11 and R21 not have any secular terms, we find 

oRlO . R~_o/.(V~o)* �9 , oR.o_ 
0z" + V R i ~  '-- q (? - - t )  %(r~o--r),  rwo=Vm, a~ 

m ~ 2 / 3  
10- '20 ( ~ P 0 ) *  

- -  m2o q (?-- i )  % ( r ~ ~  - -  r ) ,  

(2.16) 
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~11 = - - -  ~ f P k  + r i l l  (F, T) ( n ~ l  (r,  0) = 0),  R2~ = 
o 

R2~ (r, ~), * : O, R2~(r,O) ( 2 . 1 5 )  

t ~ Pt~ * * 
rwt=  ~ , ~  ~ V / p  h(rw0 ) + r ~ l ( r , z )  (r~l(r, 0) = 0 ) .  

F?Po h=l At~R10 

Here ,  R~* and r w~* a r e  a r b i t r a r y  f u n c t i o n s  i n d e p e n d e n t  o f  f a s t  t ime ;  t h e  p a r e n t h e s e s  show 
t h e i r  i n i t i a l  c o n d i t i o n s .  I t  f o l l o w s  from ( 2 . 1 6 )  t h a t  t h e  p o s i t i o n  o f  t h e  c o n v e c t i v e  f r o n t  
in  t h e  z e r o t h  a p p r o x i m a t i o n  depends  o n l y  on t h e  s low v e l o c i t y  component .  O s c i l l a t i o n s  o f  
t h e  f r o n t ' s  p o s i t i o n  t a k e  p l a c e  in  t h e  f i r s t  a p p r o x i m a t i o n .  

I n t e g r a t i n g  t h e  t h i r d  r e l a t i o n  of  ( 2 . 1 3 )  over  D w, u s i n g  t h e  second r e l a t i o n  o f  ( 2 . 1 6 ) ,  
and u s i n g  t h e  fo rmu la  f o r  d i f f e r e n t i a t i o n ,  w i t h  r e s p e c t  t o  t i m e ,  o f  t h e  i n t e g r a l  t a k e n  over  
t h e  moving volume [9 ] ,  we o b t a i n  

dVwo = ~ (R~a (?Po) r V=o --  PoV~o). (2 17) 
dT ?P0 

In  t h e  z e r o t h  a p p r o x i m a t i o n s ,  Eqs.  ( 2 . 1 0 )  and ( 2 . 1 7 )  g i v e  t h e  law of  i n c r e a s e  in  u n i -  
form ( o v e r  space )  p r e s s u r e  and t h e  change in  t h e  volume of  t h e  combus t ion  zone in  t h e  second 
variant of the problem. In the first variant, the pressure increase in the volume is com- 
pletely determined by Eq. (2.10). However, a relation analogous to (2.17) is satisfied for 
the variable volume of the reaction products leaving D o . 

In the unidimensional case, when, in accordance with (2.15), the slow velocity v1* is 
found completely from the third equation of (2.13), Eqs. (2.16) for R10 andrw0 are closed 
and with the equations for pressure P0 give the complete homobaric approximation [9, !0]. 
We introduce parameters averaged over the fast time, enclosed in brackets. Then <Pl> = 0, 
<R~*> = R~*, <v~> =v~*, <~> =i~*, <rw~> = rw~*. Thus, the functions denoted by an aster 
isk are flow parameters averaged over the fast time. 

Due to the presence of the vortical component, the velocity vl* was not found in the 
three- and two-dimensional cases. Thus, the parameters of the zeroth approximation R~0 and 
w0 were also not determined. On the whole, in the first approximation the arbitrary func- 

tions ~(~), R~*( r, z), R2~*(,r, ~), A~*( r, ~), rwl*( r, ~), elk(T) , Cak(~) are unknown. To 
find them, we examine the equations below of the second approximation, which follow from (I.! 
(2.1), and (2.2) 

�9 OR~ OR+2 
- 7  + VR10v ~ - F~ (r, t', % ~ 7 = F~ (r, t', ,),  

�9 0v2 Orwl t ~ Orwl 
~B~o-~ + VP~ = G (r, t', ~), ~ ~- -3-/7 = vw~, 

�9 OP 2 
- ~ -  + ~P0Vv~ = H (r, t', % 

R ~/3 r) ~%(rwo-- D (2R~1 *Pl~ + __V~11vl, ( 2 . 18 )  El = --~o (VPo) * 6 (rwo -- OR1, 
q ( v - l )  - q ( v - i )  \~--~o + Po ] ~ 

mloR~/o3 (?Po) ~ rwi (5 (rwo - -  r) rnlo X (rwo --  r) (2R21 + #Pl~ F2 

/Ovl ) --  - [ ~ -  + (v l -V)  vl  Rio - ~RlI ovl R~3 (vPo)* z (r=o - 0 
or' q (? - -  1) v~ ,  

2/a , (2R21 * P ~  
H ---- R20 (?P0) rw16 (rwo --  r) -i- % (r~o --  r) , ~  + Po ] - -  

opx 
O~ ~"P1Vvl -- vlVP1 

(6 is the delta function). Having transformed the momentum equation in (2.18) to the Gromek- 
Lamb form, subjecting it to the operation of divergence (here using the formula V~ i • 2~i) = 
4~i a - 2vlrot~1 [14] from vector calculus), subjecting the initial form of the equation to 
rotation, and using (1.3), we obtain 
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�9 oa% ~ VP~ Va~oG, ~ ~  [ ] , , i  G = - -  ~ot ~ : ,  V P ~ / = r o t - -  -7-i r- § V 1~o or' ~ o '  

V c, = oVv~ A ~ + 4~o~ - -  2Vl. rot ~o~ 
RIO O'r 

- -  ~V ~ R1 OVl R~/" (?p~ V v,  X ,'r,c'o - -  r) 
nxo V -gF q(~- - l )  "h-~o" ' ( 2 . 1 9 )  

rot R~ ~ ,o% = _ 2(-g 7- + (v~'V) oh --  (r vx + (OlVV,) - -  

. Rt~ Ova\ ~/~ R,,0 (TP0) rot vtX (rwo-- r) - r o t  t w) �9 

As in  t h e  f i r s t  a p p r o x i m a t i o n ,  t h e  l e f t  s i d e s  o f  t h e  momentum and e n e r g y  e q u a t i o n s  in  ( 2 . 1 8 )  
a r e  a c o u s t i c  o p e r a t o r s .  Thus ,  P2 and 5~2 s h o u l d  be s o u g h t  in  t h e  form o f  s e r i e s  in  fDk which 
a r e  a n a l o g o u s  t o  ( 2 . 8 ) .  Using t h e  same p r o c e d u r e  employed  in  d e r i v i n g  Eqs.  ( 2 . 9 )  a n d - ( 2 . 1 l ) ,  
we f i n d  t h e  f o l l o w i n g  f o r  t h e  s econd  a p p r o x i m a t i o n :  

�9 ~176 ; H d D ,  " ~162 
D D 

or,. ~ + ~ O ~  = ;"W., 

( 2 . 2 0 )  

[P20(t', T), P2k(t', ~), and ~2k(t', ~) are sought functions in expansions of the type (2.11)]. 

The right side of the second and third equations of (2.20) contain terms 8Pi/8~ , 8vi/ 
8~ which for an arbitrary function ~(~) give terms of the type t' sin Ikt', t' cos Ikt', which 
lead to an unbounded (resonance) increase i9 ~2k: ....... This type of secularity can be eliminated 
by having chosen the function ~(~) so that ~ = JYP0- 

The right side of the last equation of (2.20) should not contain terms proportional to 
sin Ikt', cos Ikt' , which also lead to the resonance growth of ~2k- Such terms appear mainly 
due to the presence of the slow component of velocity v1* and due to multiplication of param- 
eters having only fluctuational components under the condition that the equalities I i + lj = 
Xk, i i - X, = X k are possible. In accordance with (2.5), at �9 = 0 and R10 = i, the eigen- 3 
values are the numbers I k = ~k, and the equalities indicated above may be satisfied. At 

> 0, when R10 ~ const, the eigenvalues I k are generally not multiples of integers. In this 
case, the possibility of satisfaction of the equalities in question is not obvious. In any 
case, equating the complete coefficients with sin Ikt', cos Ikt' to zero, we can write an in- 
finite chain of first-order ordinary differential equations for Clk, C=k (k = i, 2 .... ). 
Limiting ourselves to a finite number of terms and using the appropriate initial conditions 
[see (2.12)], in principle we can always obtain a solution to this system. We will assume 
that this has been done. Given the thus-chosen values of Clk and Czk, the functions ~2k will 
have only fluctuational terms. Using this, we find from the second relation of (2.20) that 
the functions P2k have only fluctuational components and components dependent on ~. Mean- 
while, the components dependent on �9 do not lead to uniformity of the expansion. It then 
follows from the second equation of (2.19) that secular terms arise for the curl~ 2 only due 
to the presence of the right side of the equation. To eliminate such terms, the following 
equation must be satisfied for the slow component of the curl 

= - -  2 q ( ? - -  t) Z (r~~ --  r) R-~ 0" ( 2 . 2 1 )  

As a r e s u l t  o f  t h i s  p r o c e d u r e ,  m 2 ,  ~ 2 k ,  and t h u s  v 2 w i l l  have  o n l y  f l u c t u a t i o n a l  com- 
p o n e n t s .  In  o r d e r  t h a t  r w2 [ s e e  t h e  f o u r t h  e q u a t i o n  o f  ( 2 . 1 8 ) ]  n o t  be a s s o c i a t e d  w i t h  a 
s e c u l a r  t e r m ,  t h e  c o n d i t i o n  r w l a ( r ,  ~) = r w l * ( r ,  0) = 0 must  be s a t i s f i e d .  I t  t h e n  f o l l o w s  
f rom t h e  f i r s t  two e q u a t i o n s  o f  ( 2 . 1 8 )  t h a t  in  o r d e r  f o r  R:~ and R=2 to  n o t  have  s e c u l a r  
t e r m s ,  t h e  f o l l o w i n g  e q u a t i o n s  must  be s a t i s f i e d :  

0R~I , , 2R21X (rw0 - -  r) 0R21 ~ 2 'nj0R21x (%0 - -  r) 
8~ q -  V R ] l V l =  3R2oq(T--t) ' 0~ - -  3m20R20 q ( ?  - - t )  " 
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x o ~  .... 

~ x o  

"4 

Fig. 1 

~k---- 
a 

~8 J'k---- 

Fig. 2 

This completes the selection of the arbitrary (denoted by an asterisk) functions, ensuring 
uniform validity of the first approximation. Equation (2.21) is an equation of the Helmholtz 
type. The slow component of the curl~1* determines the vortical motion averaged over fast 
time. In accordance with (2.21), averaged vortices develop only behind the combustion front 
and are due to the difference in velocity between the carrier gas and the gas being supplied 
for combustion. This difference generates a force during combustion. If this force were 
not present, i.e., if the combustion products arrived at the velocity of the flow, then the 
right side of (2.21) would be equal to zero and, in accordance with the Heimholz theorem [12], 
i* would be equal to zero at all moments of time. Generally speaking, this is analogous to 

the effect of friction of the gas against the particles - which, in the presence case of small 
E, can be ignored. 

It should be noted that, in conformity with (2.14), the fluctuational components of the 
curl are nontrivial throughout the region of flow behind the convective gas-combustion front. 
This front does not coincide with the combustion front in the first variant of the problem. 
Ahead of the convective front - where adiabatic compression occurs - the density of the gas 
is uniform and flow is nonvortical. In accordance with (2.10) and (2.17), the adiabatic in- 
tegral is satisfied in this region. 

The value of ~ l* is determined by the dimensionless parameter v = I/(2q(~ - I)), which 
is small in combustion problems (v < i). In accordance with (2.21), in the zeroth approxima- 
tion with respect to this parameter, ~1*(r, <) = 0 (vl* = V~I*). In the first approximation 
with respect to v,m i* depends on a source term in the Helmholtz equation of the form VX(rw0 - 
r) • V~1*. Thus, at v << i (~ < i), the slow component of the curl is negligibly small and 
the averaged motion is potential flow. 

As an example of potential flow, we will examine a problem concerning the motion of a 
gas in a closed cube 0 g x, y, z ~ i. Let gas evolution occur in part of this cube: 0 
x, y, z ~ x0, x 0 < i. We adopt the model kinetics of constant gas-evolution rate (J = i), 
which is asymptotically valid during the initial stage of combustion [I0]. The law of pres- 
sure change in the cube has the form P0 = I/~ + x03~. For this region, the solution of the 
Poisson equation [13] [third equation of (2.13)] is as follows: 

co oo 

% = - -  t~=~ .~L ~2 el :  ~ , 2 ~  c o s  r d x  c o s  ~ m y  c o s  n n z ,  

x o s i n  rcmx o s i n  rcnx o x o s i n  rdx  o s i n  ~ n x  o aoo o = 0 ,  aom n =  , alo n =  
3?P o n2mn "~P o r~2 ln 

x o s i n  n l x  o s i n  ~rnx o s i n  z l x  o s i n  ~ m x  o s i n  n n z  o 

alm o ~ ,~po~21m ' alton - - -  .~8lmn 

': (2.22) 

It follows from (2.22) that the direction of the streamlines is independent of time and that 
all of the streamlines begin at the corner (0, 0, 0) and end at the opposite corner (I, i, i). 
Figure i shows a sketch of the streamlines in the plane of the diagonal section of the cube 
x = y. The solution of the analogous problem in the plane case was given in [7]. 
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Let us examine the change in the amplitude of oscillation of parameters characterizing 
the fast components of the first approximation, i.e., the relations Clk(~), C2k(~). For sim- 
plicity, we will examine a unidimensional problem. Let combustion occur at a constant rate 
in the part 0 ~ x ~ x 0 of the closed region 0 ~ x ~ 1 (x 0 < i). The solution of this problem 
in the zeroth (homobaric) approximation, i.e., the solution of Eq. (2.10), the third equation 
of (2.13), and the first equation of (2.16) are written in the form 

1~10 =/(T)(YPo) 1/?, x ~ Xo; RlO = ](~)(yPo) 1/?, x ~ Xo, ~ > / 0 ;  

Rio = (yPo) 1/'~, x ~> Xo, ~ ~< O; /)o(T) = l /?  + x : ,  

-- l--x W__l], 
/(~) = (~,&)-l/,~.+ ~=g~- -~T~-~ . / ' ~  ~ = w~o 

, t - -  x o x 0 
vl  = - - x ,  x<~xo;  v~ = ~-~o ( l - x ) ,  X > X o .  

YP o 

( 2 . 2 3 )  

Figure 2a, b shows the distributions of density R10(x) and velocity vl*(x) of the gas 
with q = 20, ~ = 1.4, x 0 = 0.25 at different moments of time (~ = 0, 0.i, 0.5, 1 - lines 0-3). 
The velocity distribution is linear. The density of the gas in the zone of adiabatic compres- 
sion ahead of the convective front (with the position of the front denoted by circles) always 
increases. The density in the combustion zone at the initial moments of time decreases. Then, 
beginning at a certain moment, it increases and eventually becomes greater than the density 
in the zone of adiabatic compression. It should be noted that with limitingly large q (q 
~), El0 in the combustion zone decreases for any ~. With finite q, an initial reduction in 
R10 occurs only upon satisfaction of the condition q(y - i) > i/(i - x0). Otherwise, R10 
increases from the very beginning. 

In analyzing the first approximation, we will restrict ourselves to the first terms of 
series (2.13), i.e., we will approximate the solution by means of the first eigenfunction 
fpl. Then using the above-described procedure to exclude terms proportional to sin X1t' and 
cos Xlt' from the right side of the third equation of (2.20), we obtain ordinary differential 

equations 

cn + A1 (~) cll = 0, 

1 

= ~ iPl dx  -~ 
0 

' ( 

�9 ( c21 + A1 (~) c21 = 0 c n  (0) ---- 0,  C21(0)------ ~11 ' 

1 . 1 2 $ 

S u: ~zl Spld:-s -~- ~,~,. PO - -  --1 ~ O''IO]r :pidx -Jf_ 
o 4 yp o' 2k2,0 I Ox 2 Ox 

.i ~ ]pldX), ,  
0 / 

(2.24) 

from which it follows that c11(~) = 0 for any T. Using the last equation of (2.23) and inte- 
grating by parts for the integrals in (2.24), we obtain 

At �9 = 0, Rio 
(2.25), we find 

v *O/'~'l--~x- l a'p:'x t g Ovl .~ . f" av I o jo ...~x /~:d x i f f : dx = - -  Y ~o ~ x  lpxax '  = - -  ' ~o t.Jo :v ,  Xo 
0 

1 2 $ 
~ V l 0 f p l  { ~ = ] P  1 ( z 0 )  0r io1 (Z0) 

O 0X 2 0Z J p l - - X  ? P 0  0X 
0 

x o x 0 
r, 

S",-7 ~~ = L %  ~ J o  + 0 0 

= 1 and, in accordance with (2.5), X l = ~, fpl = cos~x. 

(2 .25 )  

Then, using 

A (o) = + ). 
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It is evident from the last relation that at $ < 2, the function Az(0) < 0 for any x 0 < i. 
At large T (~ + ~), we have P0, Rz0 + ~, and all of the terms of A l except the last tend to 
zero. Meanwhile, at large ~, A I is finite and positive. Thus, in accordance with Eq. (2.24), 
the amplitude of oscillations of the parameters c21 increases due to heat and gas liberation. 
The amplitude of the oscillations decreases after a certain period of time has elapsed. The 
oscillations decay due to the action of the force that develops from the difference in the 
velocities of the carrier gas and the gas given off during combustion. Here, the reduction 
in amplitude occurs as exp (--r), which agrees with data from numerical solution of the prob- 
lem in [6]. 

Equations of the type (2.24) can be obtained for the analogous two- and three-dimensional 
problems. In the general case, when the averaged flow is vortical, it is difficult to analyze 
the change in the amplitude of the vibrations due to the lack of an analytical solution to 
Eqs. (2.21) for ~l*. At v ~ 1, when flow is potential in the zeroth approximation with re- 
spect to v, it follows from equations analogous to (2.24) that the amplitude of the oscilla- 
tions reaches a steady-state value after increasing during the initial stage. Such behavior 
of the amplitude is connected with the fact that the force which leads to decay of the oscil- 
lations is on the order of ~, and v is automatically zero in the zeroth approximation. Decay 
of the oscillations should be manifest in the first approximation with respect to v. The 
study of this approximation involves the solution of Eq. (2.21). It should be noted that 
in [7], where the analogous two-dimensional problem with small ~ and v was solved numerically, 
it was shown that the parameters of the flow undergo decaying oscillations about the solution 
obtained in the homobaric approximation. 
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